Rapid Photodegradation of Methyl Orange (MO) Assisted with Cu(II) and Tartaric Acid

نویسندگان

  • Jing Guo
  • Xue Chen
  • Ying Shi
  • Yeqing Lan
  • Chao Qin
  • Jingdong Mao
چکیده

Cu(II) and organic carboxylic acids, existing extensively in soil and aquatic environments, can form complexes that may play an important role in the photodegradation of organic contaminants. In this paper, the catalytic role of Cu(II) in the removal of methyl orange (MO) in the presence of tartaric acid with light was investigated through batch experiments. The results demonstrate that the introduction of Cu(II) could markedly enhance the photodegradation of MO. In addition, high initial concentrations of Cu(II) and tartaric acid benefited the decomposition of MO. The most rapid removal of MO assisted by Cu(II) was achieved at pH 3. The formation of Cu(II)-tartaric acid complexes was assumed to be the key factor, generating hydroxyl radicals (•OH) and other oxidizing free radicals under irradiation through a ligand-to-metal charge-transfer pathway that was responsible for the efficient degradation of MO. Some intermediates in the reaction system were also detected to support this reaction mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A facile one-pot oxidation-assisted dealloying protocol to massively synthesize monolithic core-shell architectured nanoporous copper@cuprous oxide nanonetworks for photodegradation of methyl orange

In this report, a facile and effective one-pot oxidation-assisted dealloying protocol has been developed to massively synthesize monolithic core-shell architectured nanoporous copper@cuprous oxide nanonetworks (C-S NPC@Cu2O NNs) by chemical dealloying of melt-spun Al 37 at.% Cu alloy in an oxygen-rich alkaline solution at room temperature, which possesses superior photocatalytic activity toward...

متن کامل

Photocatalytic degradation of methyl orange over metalloporphyrins supported on TiO2 Degussa P25.

The photocatalytic activity of meso-tetraphenylporphyrins with different metal centers (Fe, Co, Mn and Cu) adsorbed on TiO(2) (Degussa P25) surface has been investigated by carrying out the photodegradation of methyl orange (MO) under visible and ultraviolet light irradiation. The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectan...

متن کامل

Photocatalytic Decolorization of Methyl Orange Solution with Phosphotungstic Acid

Photocatalytic decolorization of Methyl Orange (MO) solution has been studied using phosphotungstic acid (HPA) as photocatalyst. The decolorization reaction of MO solution is photocatalysis. The paper reveals that the optimal loading of photocatalyst for decolorization of MO solution (10 mg/L) is 0.6 g/L. The results show that the photocatalytic decolorization reaction of MO with HPA in a h...

متن کامل

Synthesis, characterization and degradation activity of Methyl orange Azo dye using synthesized CuO/α-Fe2O3 nanocomposite

This study investigated the photo-degradation of methyl orange (MO) as a type of azo dye using a CuO/α-Fe2O3 nanocomposite. A CuO/α-Fe2O3 powder with a crystalline size in the range of 27-49 nm was successfully prepared using simple co-precipitation along with a sonication method. The characterization of the synthesized sample was done via XRD, FE-SEM, EDS, FTIR and DRS analyses. The Tauc equat...

متن کامل

Facile Fabrication of Cu2O Nanobelts in Ethanol on Nanoporous Cu and Their Photodegradation of Methyl Orange

Thin cupric oxide (Cu₂O) nanobelts with width of few tens of nanometers to few hundreds of nanometers were fabricated in anhydrous ethanol on nanoporous copper templates that was prepared via dealloying amorphous Ti40Cu60 ribbons in hydrofluoric acid solutions at 348 K. The Cu₂O octahedral particles preferentially form in the water, and nanobelts readily undergo the growth along the lengthwise ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015